Scientists turns normal mushroom to 'bionic mushroom' to produce electricity: Here's how

  • Facebook
  • Google+
  • Twitter
  • Reddit
  • Flipboard
  • Email
  • WhatsApp
Representational Image
Representational Image

New Delhi : In an effort to better understand cell biology and its related technology, Indian researchers from Stevens Institute of Technology in the US created a bionic device that generates green power by 3D-printing clusters of cyanobacteria on an ordinary white button mushroom. The invention is gaining great attention world-wide.

Bionic mushrooms to produce electricity

During the experiment, researchers took an ordinary white button mushroom from a grocery store and made it bionic, supercharging it with clusters of cyanobacteria that create electricity and swirls of graphene nanoribbons that can collect the current. "In this case, our system -- this bionic mushroom -- produces electricity," said Manu Mannoor, an assistant professor at Stevens.

"By integrating cyanobacteria that can produce electricity, with nanoscale materials capable of collecting the current, we were able to better access the unique properties of both, augment them, and create an entirely new functional bionic system," he said.

One should know that Cyanobacteria has the ability to produce electricity is well known. Yet, researchers have been limited in using these microbes in bioengineered systems because cyanobacteria do not survive long on artificial bio-compatible surfaces.

Use of cyanobacterial cells

Mannoor and Sudeep Joshi, a postdoctoral fellow wondered if white button mushrooms, which naturally host a rich microbiota but not cyanobacteria specifically, could provide the right environment nutrients, moisture, pH and temperature for the cyanobacteria to produce electricity for a longer period.

They showed that the cyanobacterial cells lasted several days longer when placed on the cap of a white button mushroom versus a silicone and dead mushroom as suitable controls.

"The mushrooms essentially serve as a suitable environmental substrate with advanced functionality of nourishing the energy-producing cyanobacteria," said Joshi.

Ink containing graphene nanoribbons

"We showed for the first time that a hybrid system can incorporate an artificial collaboration, or engineered symbiosis, between two different microbiological kingdoms," he added.

Reseachers considered a robotic arm-based 3D printer to first print an "electronic ink" containing the graphene nanoribbons.

This printed branched network serves as an electricity-collecting network atop the mushroom's cap by acting like a nano-investigation to access bio-electrons generated inside the cyanobacterial cells.

Imagine needles sticking into a single cell to access electrical signals inside it, said Mannoor.

Symbiosis of cyanobacteria

Researchers printed a "bio-ink" containing cyanobacteria onto the mushroom's cap in a spiral pattern intersecting with the electronic ink at multiple contact points.

At these locations, electrons could transfer through the outer membranes of the cyanobacteria to the conductive network of graphene nanoribbons.

Shining a light on the mushrooms activated cyanobacterial photosynthesis, generating a photocurrent.

In addition to the cyanobacteria living longer in a state of engineered symbiosis, researchers showed that the amount of electricity these bacteria produce can vary depending on the density and alignment with which they are packed, such that the more densely packed together they are, the more electricity they produce.