World's oldest forest discovered in New York, may provide links to climate change
New York : While there has been a battle on climate change from a long time, the scientists have dug out the oldest forest in the fossil record at a quarry in the Catskill region of New York.
The discovered primordial woods flourished 386 million years ago, during the Devonian period, and contained at least three types of tree, one of which represents a “quantum leap” in plant evolution, according to a study published on Thursday in Current Biology.
The discovery of these woods may reveal the phenomenon of how these trees sparked an "energetic revolution", leading to evolution of life and making a habitable climate on the planet, said the authors.
"The origin of big trees and forests seems to be coincident in time with some dramatic changes in the Devonian ecosystem and climate," said lead author William Stein, an emeritus professor of biology at Binghamton University, in a call.
"In particular, there's been pretty clear evidence that there was a drawdown of CO2 levels from the atmosphere during this time," causing global cooling, he added. "This is important because we're, in a sense, looking at the opposite trending effects currently with people, deforestation, and global warming."
The root systems of this Devonian forest are preserved in an abandoned sandstone quarry near Cairo, New York. Though the site has been known for plant fossils since the 1960s, the new specimens were found within the last decade, and may have become noticeable due to years of weathering.
According to the researchers, the fossils represent three tree families - Archaeopteris, Eospermatopteris, and an unidentified species that may have been a type of vascular plant called a lycopsid.
Eospermatopteris, which looked a little like a modern palm tree, was also found at the next oldest fossilized forest, located about 30 miles away in Gilboa, New York. But the real star of the study is Archaeopteris, because it was “strikingly advanced for its time” and likely represents “the beginning of the future of modern forests,” Stein said.
“This was a large plant that had modern-looking secondary tissues—basically wood—and it was the first major player that we understand actually had leaves,” he explained. “It’s essentially identical to what you would expect to see today in modern conifers or flowering and seed plants as a whole.”
Though the Cairo site is a few million years older than Gilboa, Stein said that he shies away from calling it “the oldest forest” because the two sites may have represented one long-lived and relatively stable biome. “That’s our hypothesis: that they probably are just different ecological snapshots of the same longstanding forest,” he said.